欧亚体育官网登录

| English

产品与服务

欧亚体育官网登录

欧亚国际APP

欧亚体育官网登录:氢能源行业专题报告:制氢端及绿氢平价之路

发布时间:2024-03-02 11:54:50 来源:欧亚国际APP 作者:欧亚体育官网

  1. 制氢技术:蓝氢为过渡方案,绿氢是终极路线 年全球氢气总生产量约 9500 万吨(同比+3%),其中中国产量占比 30%, 目前传统化石燃料制灰氢仍为主要方式。2022 年全球氢气总生产量约 9500 万吨,同比 增长 3%,大部分氢气通过传统化石燃料生产,其中天然气制氢是最主要的制氢方法, 占产氢总量的 62%,其次为煤炭制氢占 21%,主要在我国,工业副产制氢占 16%。分 区域来看,全球氢产量的 70%集中在中国、美国、中东、印度和俄罗斯,其中中国由于 炼油和化工行业的需求氢产量约占全球的 30%。 目前低碳氢产量仅占 0.7%,IEA 预计到 2030 年低碳氢产量可达 2000 万吨。2022 年全球低碳氢产量仅不到 100 万吨,占氢气总产量的 0.7%。其中电解水技术生产的绿 氢产量在快速增长,但 2022 年产量仍不足 10 万吨,同比增长 35%。IEA 预测,假设已 宣布的建设项目全部投产,到 2030 年,低碳氢产量可达 2000 万吨,其中主要分布在欧 洲(30%)和澳大利亚(20%)地区。

  绿氢方面,欧洲、澳大利亚、美国受政策推动发展较为积极,拉美、非洲也有所布 局。根据国际能源署《全球氢能回顾 2023》,目前已宣布的低碳氢项目多数为电解氢的 绿氢项目,到 2030 年 70%以上的低碳氢生产可来自电解氢。分区域来看,欧洲地区发 展较为积极的为西班牙、丹麦、德国和荷兰,合计占欧洲绿氢总产量的 55%,主要受 IPCEI 项目和欧洲氢能银行的推动;澳大利亚依靠丰富的风光资源,到 2030 年绿氢产量有望 达 600 万吨,并且有望实现绿氢出口;拉美地区已宣布的项目到 2030 年绿氢产量也有 望达 600 万吨,其中主要集中在智利、巴西和阿根廷;美国主要受益于清洁氢生产的税 收抵免(Clean Hydrogen Production Tax Credit),至 23 年 9 月的前 12 个月宣布的电 解槽项目产能达 9GW;中国方面,已宣布项目正在积极建设落地(约占总规划产量的 40%);非洲地区,已宣布项目到 2030 年绿氢产量有望达 200 万吨,主要集中在肯尼 亚、毛里求斯、摩洛哥、纳米比亚和南非,已有 9 个项目规划产能超过 1GW。 蓝氢方面,美国和欧洲(英国、荷兰和挪威)为蓝氢的主产地。根据 IEA 统计的现 已宣布的项目预测,到 2030 年美国蓝氢产量有望达到 400 万吨,欧洲有望达 300 万吨, 主要产地为英国、荷兰和挪威。

  利用可再生能源发电制绿氢是未来趋势,2030 年光伏耦合绿氢成本有望降至 1~1.5 美元/kg。根据 IEA,2021 年全球生产氢气的平均成本为:天然气制氢成本 1.0-2.5 美元 /kg;采用 CCUS 技术的蓝氢成本 1.5-3.0 美元/kg;使用可再生电力电解生产氢气的绿 氢成本为 4.0-9.0 美元/kg。到 2030 年光伏耦合的绿氢成本有望降低至 1.5 美元/kg,到 2050 年在光伏资源较好的地区有望降低至 1 美元/kg(利用小时数达 2600 小时),其 中电力成本占比约 55%。

  目前灰氢生产成本最低,仍然为供氢主体,未来向绿氢和蓝氢生产方式转变主要取 决于经济成本的降低。目前我国灰氢成本最低(煤制氢 7~10 元/kg、工业副产制氢 10~16 元/kg)但碳排放量较高,绿氢的生产成本较高(市电生产成本 30~40 元/kg),我们认 为未来氢能行业能否获得成功主要取决于向绿氢和蓝氢生产方式转变的经济可行性,主 要受可再生能源成本、基础设施建设和维护成本、资本成本等因素的推动。

  电解槽的基本原理是利用两个被电解质隔开的电极传输电子,从而产生电流以电解 水。电解质是负责将产生的阴、阳离子从一个电极传输到另一个电极的介质。目前市场 上的电解水制氢技术以传统碱性电解(ALK)、质子膜纯水电解(PEM)、固体氧化物 电解(SOEC)和阴离子膜电解(AEM)四种技术为主,其中 ALK 和 PEM 已进入商业 化阶段。

  传统碱液电解(ALK):投资成本低,使用寿命长,是目前的主流电解水模式。ALK 的系统设计较为简单,易于制造。根据 IEA 2023 年的统计,目前欧洲和北美国家 ALK 电解槽装机的资本成本约 1700 美元/kW,而国内成本相对低很多,基本在 750-1300 美 元/kW。而根据世界经济论坛(WEF)的统计,2023 年国内部分 ALK 电解槽的资本成 本已经可以做到 2000-3000 元/kW。

  碱性电解槽具有简单的堆叠和系统设计,并且相对容易制造,寿命可达 30 年以上。 目前电极面积达 3m 2,电解质使用高浓度 KOH(通常 57 mol/L),电极使用 ZrO2基隔 膜和镍(Ni)涂层不锈钢。离子电荷载体是羟基离子 OH-,KOH 和水渗透穿过隔膜的多 孔结构实现电化学反应,但这会使得溶解在电解质中的氢气和氧气混合,限制较低的功 率操作范围以及在较高压力下运行的能力。为了防止这种情况,需要使用较厚的隔膜 (0.252mm)或者加入垫片,但这会导致两个电极之间的电阻欧姆提升,从而在给定电 压下大幅降低电流密度。未来如何增强 ALK 的绿电耦合性和电流密度将是技术研究的重 点突破方向,目前可以通过使用零间隙电极、更薄的隔膜和不同的电催化剂来增加电流 密度,从而缩小与 PEM 技术的性能差距。一般而言碱性电解槽寿命可以达到 30 年以上。

  碱性电解槽需要将电解质(KOH)再循环到电池组组件中,从而需要额外的碱液循 环泵,这个过程中会产生效率损耗(通常小于电堆功耗的 0.1%)。完成电解反应后,氢 气和氧气会在气液分离系统中分别与碱液分离。补水系统负责保证水源的稳定连续供给, 并且需要考虑隔膜的水渗透。此外,系统组件还包括后续的脱氧干燥系统等。

  PEM 电解槽使用薄质子交换膜(0.2mm)和具有先进结构的电极,可以实现更小的 电阻和更高的效率。全氟磺酸质子交换膜(PFSA)具备化学稳定性和机械鲁棒性,可 以承受 70pa 的高压差。但其提供的酸性环境、高电压和阳极中的析氧产生了恶劣的氧 化环境,因此需要采用贵金属铱或铂涂层钢/钛作为电极材料,不仅可以为电池组件提供 长期稳定性,同时还可以提供极佳的电子传导性,从而提高反应效率。但贵金属催化剂 等材料的成本偏高,导致 PEM 堆叠比碱性电解槽更昂贵。PEM 电解槽的系统设计较为 紧凑和简单,但对铁、铜、铬、钠等水杂质比较敏感,且容易起火。目前 PEM 电解槽 的电极面积接近 2000cm2,但与单堆实现 MW 级别的目标仍有较大差距,此外大型 MW 级别 PEM 电解槽的可靠性和寿命仍有待验证。

  PEM 系统组件比碱性系统简单得多,通常只需要在阳极(氧气)侧配套循环泵、热 交换器、压力控制和监测设备。在阴极侧通常需要配套气体分离器、用于去除残余氧气 的脱氧设备、气体干燥器,以及压缩机。 PEM 系统可以在大气压条件(atmospheric)、压差(differential)和平衡(balanced) 压力条件下运行,从而能够降低成本、系统复杂性以及减少维护成本。1)在平衡压力 条件下,电解电池的两侧在相同的压力下运行,该压力由氧气和氢气调节控制阀控制。 2)在大气压条件下(1 atm),一旦阳极有水并且电池电压高于环境温度下的热中性 电池电压,电极处就会产生氢气和氧气。3)在压差条件下,PEM 膜电解质可以在为 3~7MPa 的压差下运行,但需要更厚的膜来提高机械鲁棒性并减少气体渗透以保证效率, 并且通常需要额外的催化剂来将由于高压而发生渗透的氢气重新转化为水。

  固体氧化物电解(SOEC):效率高,热机状态动载性能好,但需要高温热源,且 寿命短,目前仍处于试验阶段。SOEC 技术在高温(700-850℃)下运行,可以使用相 对便宜的镍作为电极,同时部分反应能量可通过余热提供,因此电力需求减少。但在升 温期间,可能会导致电解质层更快降解,使得其使用寿命较短。目前 SOEC 技术从实验 室转向产业化应用仍面临较多挑战。

  固体氧化物电解槽(SOEC)通常在高温(700-850C)下运行。优点在于可以使 用相对便宜的镍电极;高温使得电力需求减少,可以提供用于电解的部分能量,基于电 力的表观效率可以达到高于 100%;作为燃料电池和电解槽的可逆性的潜力;CO2 和水 共电解可以产生合成气,作为化学工业的基本组成部分。缺点在于在尤其是停机/重启期 间的热化学循环导致电解质层更快的降解、使得寿命更短,其他问题包括在更高压差下 实现密封,用作密封剂的二氧化硅污染等。尽管目前一些 SOEC 电解槽示范项目达到 1MW,但目前大部分还在 kW 级别。

  SOEC 电解槽可以与制热技术相结合,由于水电解随着温度的升高而越来越吸热, 因此系统效率相对更高。高温环境下电池的能量需求迅速减少,因此多余的能量可以用 来在高温下进行水分解反应。当电池吸热运行时,水蒸发的热量可以从工业或集中式光 伏电厂的废热获取。一个重要且完全可再生的选择是将 SOEC 与集中式光伏耦合,从而 为 SOEC 电解槽提供电力和热量。

  阴离子膜电解(AEM):试图将 PEM 的高效率和 ALK 的简单性的优点相结合, 目前还处于试验前期阶段。AEM 的潜力在于将碱性电解槽的简单性与 PEM 的高效率相 结合,采用非贵催化剂和高性能阴离子膜,兼具低成本、高电流密度、高电耦合性等优 势,但 AEM 膜存在化学和机械稳定性问题,导致寿命曲线不稳定,因此大面积阴离子 膜的研制还需要较长周期。

  阴离子交换膜(AEM)目前尚处于有限部署阶段,只有少数公司将其商业化。AEM 的潜力在于将碱性电解槽的简单性与 PEM 的高效率相结合,采用非贵催化剂和高性能 阴离子膜,并且与 PEM 一样允许在压差条件下操作。然而,AEM 膜存在化学和机械稳 定性问题,导致寿命曲线不稳定。此外,AEM 还存在导电率低、电极结构差和催化剂动 力学慢的问题,通常通过调节膜的导电性能或通过添加电解质(例如 KOH 或 NaHCO3) 来改善性能,但可能会导致耐久性降低。

  根据国际可再生能源署,长期的绿氢生产成本有望至多下降 85%,主要基于电力成 本和电解槽设备资本开支的下降,以及电解槽运行效率的提升和优化设计。根据国际能 源署,电解槽装机的成本至 2025 年较 2023 年有望降低 50%,至 2030 年有望降低超过 60%达到 600 美元/kW,从而使得在绿氢生产成本中电解槽的 CAPEX 成本份额降至约 25%。

  规模经济:通过千兆瓦级生产线中的自动化流程增加电堆产量,从而实现成本 的逐步降低。电堆成本在低产量下约占总成本的 45%,但在高产量下可以降至 30%。对于 PEM 电解槽来说,实现规模经济的临界点是每年生产 1000 套 (1MW)左右,可以使电堆制造成本降低近 50%。此外,可以通过系统组件 和工厂设计的标准化来实现系统成本的节约。

  减少稀缺材料用量:稀缺的原材料可能成为电解槽规模扩大的瓶颈,目前用于 PEM 电解槽的铱和铂产量仅能支持估计 3~7.5GW 的年产。